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Abstract. The basic result presented is the following: with two (hopefully reasonable)
assumptions about the intentions behind the RDF model, it can be shown that the
RDF model and a model allowing for nested triple and lists of resources and triples,
can be mapped to one another (in both directions). This allows to establish a close
link between the RDF model and extended models recently suggested (SlimRDF [3],
XRDF [4]). Further, the approach may help to clarify some problems related to inter-
preting the roles of reification and containers in the RDF model.

1 Introduction

As RDF is considered to be a key ingredient of the evolving semantic web, lack of clarity
should be avoided.ReificationandContainersgave rise to a number of discussions. In this
paper, we propose an interpretation of these two constructs that may help to clarify this issue.
It also demonstrates, how complex expressions can be constructed from RDF that allow a
straightforward representation of the modeler’s intentions. The basic idea is as follows: In
RDF, if someone wants to express a relation between a statement and a resource or two
statements, she has to utilize reification. If a relation between an entity (be it a resource or
a triple or another group of entities) and a group of entities should be expressed, rdf:Bag,
rdf:Seq or rdf:Alt have to be used. Essentially, both constructs are needed to allow expressing



nested or grouped constructs with flat triples. Both constructs are not properly tied into the
RDF model, for example, the meaning of attaching a predicate to a reificant1 is not fixed in
the model (ifr reifies [s, p, o] and [r, p2, o2] is given, is the intention to express[s, p, o] is
p2-related too2 or is the intention to take the triple literally, that isr is p2-related too2?).
Fig. 1 and Fig. 2 demonstrate the interpretation of a collection of flat-triple statements as one
nested triple.
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Figure 1: Demonstrating bags and reification (Figure 9 in [2])
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Figure 2: An intention-equivalent nested representation.

We decided to fix the possible interpretation of the flat-triple constructsreificationandcon-
tainersby assuming that each reification is only a surrogate for the triple it represents and
each container is only a surrogate for a list of entities2, that is, in a natural representation of
the intentions, each reification and each container will be substituted by the represented triple
or list and all only technically necessary triples of the flat model will be eliminated. We will
argue that such a non-flat model captures theessenceof the initial set of statements. In the
following, the two underlying assumptions will be presented more precisely.

1.1 Assumptions

Let S be a set of flat-triple statements.
1This terminology will be explained shortly.
2An entity may be a resource, a literal, a statement or a list of entities.



Assumption 1:Be r the reificant3 of the triple [s, p, o] as defined in [2], that is,
the setS contains the triples[r, rdf:subject, s], [r, rdf:predicate, p], [r, rdf:object, o] and
[r, rdf:type, rdf:Statement] (we will generally present triples in an infix4 sequence, that is
as [subject, predicate, object]). The reification is used in another statement, say[s1, p1, r].
Now, we assume that the intentions behind this subset of statements is to express thatp1 re-
latess1 to [s, p, o]. This intention can easily be captured in a model allowing nested triples
as [s1, p1, [s, p, o]].

Assumption 2:Be c a container, for example of type Seq, that is[c, rdf:type, rdf:Seq] ∈
S. The n-ary sequenceRC = (r1, . . . , rn) of resources contains the elements ofc, that is,
[r, rdf: i, ri] ∈ S for all i, 1 ≤ i ≤ n. The container is used in another element ofS, say
[s, p, c]. Now, we assume that the intentions behind this subset of statements is to express that
p relatess to (r1, . . . , rn). This intention can easily be captured in a model allowing for lists
of resources as[s, p, (r1, . . . , rn)].5

Based on these two assumptions, the role of containers and reification can intuitively be
described as allowing to express structure of arbitrary complexity with the limited instrument
of a model based on flat triples.

In the next section, an extended model will be suggested that directly captures the under-
lying intentions of the constructsreificationandcontainerby introducing nesting and lists. In
Section 3, we will prove that every RDF model can be expressed as an extended modeland
that every extended model can be expressed as an RDF model. This may suggest that the more
comprehensive representation of the RDF model (that is: the extended model) may be pref-
ered when RDF models are used in applications. In Section 4 this aspect is briefly explored
and two representation of the extended model, namely a graph notation and a straightforward
XML DTD are suggested. In Section 5, two issue that explore the relation between structural
and semantical aspects may give hints on possible directions for developing semantics for the
extended models. Section 6 concludes the paper with a brief discussion.

2 An Extended Model

Let A be a reasonably selected alphabet. LetA∗ be the set of strings defined overA. The
following grammar defines expressions overA∗ of the formR recursively as

R ::= r | ′(′ R ′,′ R ′)′ | ′[′ R ′,′ R ′,′ R ′]′

Here,r denote elements ofA∗. (Sub-)Expressions of this form will be calledatomic. A (sub-
)expression of form R is calledresource. A (sub-)expression of form R which matches the
pattern[R,R,R] is calledstatement. A (sub-)expression of form R which matches the pat-
tern(R,R) is calledlist. Note that we will frequently use(r1, r2, . . . , rn) instead of the more
cumbersome(r1, (r2, (. . . , (rn−1, rn) . . . ) where this can be done without the risk of misin-
terpretation. We will also leave out the comma regularly. Furthermore, we will only consider

3In [2], this is calledreified statement, which might be a bit confusing–there is something that is reified, yes,
but that is the “original” statement[s, p, o]. Instead ofreificant, reifying resourcecould be used. Note, that it
would not be very useful to sayreifying statementbecauser is not defined to be a member of the setstatement
(which is a concept of the RDF model defined in [2]), insteadr has thetype rdf:Statement, which is, for the core
RDF model, only a string representing a resource, and requires an interpretation in the context of RDF Schema
and its constraints and concepts.

4infix with respect to the predicate.
5Note, that both assumptions together can be used to build list of statements etc.



finite sets of finite expressions.

3 Relation between Extended model and RDF model

Let us begin with a remark: we will assume that the sets of statements of the RDF model that
we will consider below are, in a certain sense, well-behaved, that is, we will assume that no
reificant nor container is part of the (possibly complex) structure that it represents6. We will
capture this more precisely in an algorithm that tries to order resources in strata so that each
resource in a stratum represents structures that consist of resources of lower ranking strata.
The algorithm can also be used to detect whether its input (a set of statements of the RDF
model), is not well-behaved.

Below, we will show that extended model and RDF model can be mapped to another. First,
some definitions are needed to prepare the stage. In the following,s, p, o, s1, o1, r1, . . . , rn will
all be entities, that is, either an atom, a statement or a list if the extended model is considered
or resources or literals (only possible in object position) if the RDF model is considered.

Note that the definitions 1 and 3 can be applied to both models.

Definition 1 (Reification).
Given a resourcer and the following set of statements,T r:
T r = { [r, rdf:subject, s], [r, rdf:predicate, p],

[r, rdf:object, o],[r, rdf:type, rdf:Statement] }
Then,r is called areificantof [s, p, o] andT r is called areificationof [s, p, o].

Definition 2 (Reification: Derivation, Consequence).
Let u be a nested statement of the extended model of the form[[s, p, o], p1, o1]. Let r be a
reificant of [s, p, o] andT r be the corresponding reification. The setD = [r, p1, o1] ∪ T r is
called aderivationofu. u, in turn, is called aconsequenceofD (analogously defined foru =
[s1, [s, p, o], o1] and [s1, p1, [s, p, o]] ). With respect to a setC of statements, we say thatu is
derivablein C if D ⊆ C.

Definition 3 (Container).
Given a resourcec and the following set of statements (withX ∈ {rdf:Seq, rdf:Alt,rdf:Bag}):
T c = { [c, rdf:type,X]} ∪ {[c, rdf: i, ri] | i ∈ N, 1 ≤ i ≤ n}. Then,c is called acontainer, T c

is called ann-ary container definitionand then-ary sequenceRc = (r1, . . . , rn) of entities
is called theelementsof c.

Definition 4 (Container: Derivation, Consequence).
Let u be a nested statement of the extended model of the form[(r1, . . . , rn), p, o]. Let c be
a container for the elements(r1, . . . , rn) of the Seq-type and letT c be the correspond-
ing container definition. The setD = [c, p, o] ∪ T c is called a derivation of u. u, in
turn, is called aconsequenceof D (analogously defined foru = [s, (r1, r2, . . . , rn), o] and
[s, p, (r1, r2, . . . , rn)] ). With respect to a setC of statements, we say thatu is derivablein C if
D ⊆ C.

6In the RDF model, as it is described in [2], it is, for example, possible to reify a statement that contains the
representing reificant–which should, almost certainly, not be allowed. The same goes for containers containing
themself.



Note that aconsequencecan not be a statement from the flat RDF model. However, the
derivationof a statement with only one level of nesting can completely consist of statements
from the flat model. To be able to define some notion of equivalence between sets of state-
ments from the extended and the flat model, we have to define how a deeply nested statement
can be derived recursively from a set of flat statements.

Definition 5 (Rooted, Root, Hull). BeO a set of flat statements from the RDF model. Let
N be a set of statements from the extended model. Letu be a statement from the extended
model. We say thatu is rootedin O if either
(1) u ∈ O or
(2) a derivationD of u can be given such that each statementt ∈ D is rootedin O.
We say thatN is rootedin O if every statementn of N is rootedin O. O is calledroot of
u if u is rooted inO; it is called minimal rootof u if it is a root of u and for any statement
t ∈ O, u is not rooted inO\{t}.O is calledroot ofN if every statementn ∈ N is rooted in
O; it is calledminimal rootofN if it is a root ofN and for any statementt ∈ O a statement
n ∈ N can be found such thatn is not rooted inO\{t}. We say thatN is a hull ofO, if O
is a minimal root ofN – we will alternatively say thatN andO are intention-consistent(or
simplyconsistent).

Example The following setO of flat statements is aminimal root(that is, no statement can
be removed fromO) for the nested statement [Gustaf says [Ecki likes (Reinhold Wolfram)]]:
{ [Gustaf saysr1], [r1 rdf:type rdf:Statement], [r1 rdf:subject Ecki], [r1 rdf:predicate likes]
[r1 rdf:objectl1], [l1 rdf:type rdf:Seq], [l1 rdf: 1 Reinhold], [l1 rdf: 2 Wolfram] }. The sets
{ [Gustaf says [Ecki likes (Reinhold Wolfram)]]} or { [Gustaf says [Ecki likes (Reinhold
Wolfram)]], [Gustaf saysr1], [r1 rdf:predicate likes} are, among finitely many others7, are
hullsof O.

We look for hulls that contain only the minimally necessary number of statements to
capture, with respect to the above asumptions, the intentions of the underlying set of flat
statements.

Definition 6 (Essence).BeO a set of flat statements from the RDF model. Let
NO = {N |N is a set of statements from the extended model∧ N is a hull ofO} be theset
of possible hullsofO. The subset ofNOmin = {N ∈ NO |@M ∈ NO with |M| < |N |} is the
set of minimal hulls. An element ofNOmin is called aminimal hull or essenceofO – we will
alternatively say thatN andO are intention-equivalent(or simplyequivalent).

Note that due to the definitions of derivations, the minimal hull of a given set of statements
from the RDF model is unique.

Example The minimal hull for the setO of the above example is{ [Gustaf says [Ecki
likes (Reinhold Wolfram)]]}.

Now, the following two propositions can be proved. The first one essentially states, that
each set of extended statements can be expressed as an intention-consistent set of flat state-
ments, while the second will show that each set of flat statements can be expressed as an
intention-equivalent set of extended statements.

Proposition 1: For each setN of statements from the extended model, a setO of state-
ments from the RDF model can be found such thatO is a minimal root ofN .

7In contrast, for a set of nested statements there is usually an infinite set of possible minimal roots due to the
possible variations in naming the necessary containers and reificants.



Proof: Intuitively, each nested statement can be expressed with a set of flat statements
that allows to derive, possibly incurring intermediate nested statements, the initial statement
(some care has to be taken not to confuse thesymbolsused in the model). Let us consider an
example:

Initial Expression: [Gustaf says [Ecki likes (Reinhold Wolfram)]]
First Step: [Gustaf says [Ecki likesl1]]
(add derivation of [l1 rdf:type rdf:Seq]
the list) [l1 rdf: 1 Reinhold], [l1 rdf: 2 Wolfram]

Second Step: [Gustaf saysr1]
(add derivation of [r1 rdf:type rdf:Statement], [r1 rdf:subject Ecki]
the embedded [r1 rdf:predicate likes], [r1 rdf:objectl1]
statement) [l1 rdf:type rdf:Seq]

[l1 rdf: 1 Reinhold], [l1 rdf: 2 Wolfram]

This can be formalized as follows. BeCE a set of statements8 from the extended model. With
the following construction, an intention-consistent setCR of statements from the RDF model
can be determined.

Algorithm Flaten(In:CE)
(1)CR = ∅. Foreacht ∈ CE do
(2) Expand(t,0,CR)

(1) FunctionExpand(In: Expressiont, In: Int l, InOut: Set of StatementsE) returns aSymbol
(2) If t ∈ A∗ then returnt
(3) If Form(t) =Statement (matching[s, p, o]) then
(4) sr = Expand(s,l+1,E);sp =Expand(p,l+1,E);so = Expand(o,l+1,E)
(5) r =Symbol9(t);
(6) if (l = 0)10 thenE = E ∪ { [sr, sp, so]}; returnEmptySymbolelse

E = E∪ { [r, rdf:type, rdf:Statement],
[r, rdf:subject, sr], [r, rdf:predicate, sp] [r, rdf:object, so] }; returnr

(7) If Form(t) =List (matching(r1, . . . , rn)) then
(8) r =Symbol(t);
(9) E = E ∪ { [r, rdf:type, rdf:Seq]}
(9) For1 ≤ i ≤ n do
(10) si =Expand(ri,l+1,E)
(11) E = E ∪ { [r, rdf: i, si] }
(12) returnr;

Let us sketch the proof of the correctness of the algorithm: (1) The algorithm terminates. To
see this, consider the following: The functionExpandrecursively descents through the struc-
ture of its input expression. It will stop the descent in each branch of the structure as soon as

8Arbitrary sets of expressions resp. resources could also be allowed. This would require only a simple, but
unnecessary (for this presentation) extension.

9The functionSymbol returns a new symbol for each subexpressiont that is not already represented in the
flat model, otherwise, the already known symbol will be returned. This will be discussed below

10The top-level expression is always a statement. There is no need to reify this statement because the reificant
would be left unused (in this particular expansion).



an element ofA∗ is found (which will ultimately be the case, as the expressions have been as-
sumed to be finite). Furthermore, each subexpression branch will be considered exactly once.
(2)CE and and the computed setCR are intention-consistent. To see this, consider the follow-
ing. First note that all statements added toCR are flat. The algorithm constructs a derivation
for each top-level statement by constructing derivations for each embedded expression while
returning from the descent. Thus, each statements ofCE is rooted in the constructedCR. CR

is a minimal root because no other statements but elements of derivations are added toCR.�

A note regarding the functionSymbol. In the algorithm, we have chosen to compute one
uniquename for literally identic subexpressions, that is if, say, the statement [Ecki likes
RDF] is encountered twice, it will be reified only once (although, to keep the algorithm above
simple, it will be flatened twice but this will result in an identic set of flat statements and the
redundancy will thus vanish due to considering sets). This makes it easy to identify literally
equivalent expressions in the flat model (they have the same “name”), it, however, may make
it more difficult to explore the differences in the meaning of multiple occurences of literally
identic expressions (this will have to consider the structural context of such expressions –
sensibly dealing with this kind of context should be made possible in the semantics build
upon this models, so, for a full discussion of the implications, precise objectives for semantics
are required. It is, nevertheless, easy to generate a new symbol for each occurence of literally
identic subexpressions, if this is found to be the better way to go).

Proposition 2: For each setO of statements from the RDF model, a setN of statements
from the extended model can be found such thatN is a minimal hull ofO.

Proof: (constructive) The resources used in the RDF model can be arranged in strata if
it is assumed that no circular definitions of reifications resp. containers exist (see below for
details). The following algorithm will either determine a stratification or detect that circular
references exist.

Algorithm Stratification(In:CE)
Initially, all resources and literals are unmarked.
[Compute Stratum 0]Mark all literals as being in stratum 0. Mark all resources that are
neither a reificant nor a container as being in stratum 0.
[Compute further Strata]while there is a resourcer that isunmarkedand all the resources
or literals that are represented byr (this set of entities will be calledE)11 are markeddo

Determine the highest marking, sayj, of a resource inR.
Mark r to be in stratumj + 1.

[Check validity] if an unmarked resource exists
then return “ERROR: there are mutually referencing structures”
elsereturn “OK - a stratification has been determined”.

With the above assumption of a finite input set and finite expressions, the algorithm eventually
terminates (in each round, an unmarked resource is marked). If the algorithm prints out the
“OK” message, the following condition will hold: each resourcer that represents a structure

11If r is a reificant and[s, p, o] is a statement thatr reifies thens,p ando are inE. If c is a container then
the elements ofRc (as defined above) are inE. Note that with the definition of container above, a set of flat
statement that defines an-ary container also defines(n − 1), (n − 2) . . . -ary containers. We assume thatE
contains all eintities that are elements of the container with the largest arity. Besides this solution for the case in
whichr represents more than one structure, all other cases should probably be considered an error (for example,
a resource that represents two statements or a statement and a container, or two non-inclusive containers).



belongs to a higher stratum then the resources/literals that are part of the represented structure.
If the algorithm returns an ERROR message, at least one resource represents a structure
that contains either the resource or a structure that, if recursively dereferenced, contains the
resource.12

From finiteness follows that a highest ranking non-empty stratum, sayk exists. Further-
more, it follows from the construction that the strata that are formed by marking resources
and literals as their elements, are consecutively numbered.

Example This is an example of a mapping from a stratified set of flat statements to an
extended statement:
Input: { [Gustaf saysr1] [r1 rdf:subject Ecki], [r1 rdf:predicate likes], [r1 rdf:objectl1], [r1

rdf:type rdf:Statement], [l1 rdf:type rdf:Seq], [l1 rdf: 1 Reinhold], [l1 rdf: 2 Wolfram]}
Stratum 0: { Gustaf Reinhold Wolfram Ecki says likes rdf:object rdf:type rdf:subject
rdf:predicate rdf:Statement rdf:Seq rdf:1 rdf: 2 }
Stratum 1: {l1}
Stratum 2: {r1}
Now a mapping along the stratification can be performed. First,{ [l1 rdf:type rdf:Seq], [l1
rdf: 1 Reinhold], [l1 rdf: 2 Wolfram] } is mapped to (Reinhold Wolfram), the statements
are removed from the initial set, and each occurence ofl1 is replaced by (Reinhold Wol-
fram), leading to the next set of statements (now already extended):{ [Gustaf saysr1] [r1

rdf:subject Ecki], [r1 rdf:predicate likes], [r1 rdf:object (Reinhold Wolfram)], [r1 rdf:type
rdf:Statement], [(Reinhold Wolfram) rdf:type rdf:Seq]}. Next, the set{ [r1 rdf:subject Ecki],
[r1 rdf:predicate likes], [r1 rdf:object (Reinhold Wolfram)], [r1 rdf:type rdf:Statement]} is
mapped to [Ecki says (Reinhold Wolfram)] which replacesr1, resulting in the minimal hull,
[Gustaf says [Ecki likes (Reinhold Wolfram)].

This is captured in the following algorithm. It will determine an intention-equivalent ex-
tended model,CE from a set of statements of the RDF model,CR.

Algorithm Nest(In: CR)
For stratums = 1 to k do

For all resourcesr in s do
if r is a reificantthen

Remove fromCR the four statements defining the reification
which hasr as a reificant.

Replace all occurences ofr in expressions inCR by the statement thatr reifies.
if r is a containerthen

Remove fromCR all statements of the form[r, i, ri] and
build a listRr from the resourcesri

Replace all occurences ofr in expressions inCR by the listRr

CE = CR.
Again, the proposition follows from the construction. �

The relation between the RDF model and the extended model relies on the two assumptions.
If these assumptions are not accepted as being a reasonable interpretation of the intentions
behind the RDF model, then the propositions and proofs given above do not hold. However,
the newly introduced model may still be considered as a reasonable, comprehensive alterna-

12Note that this can also be a chain of reifications and containers, that is, we consider it to be an error if a
container contains a reificant that reifies a statement that contains the container etc.



tive to the RDF model due to its ability to capture complex expressions naturally. We will
try to illustrate this by suggesting two alternative representations in the next section, namely
a graphical notation and a XML DTD, which both may be considered as advantageous13 if
compared to the alternatives offered in the RDF M&S specification.

4 Graphical and XML Representations of the Extended Model

The following graphical examples and the XML DTD largely follow the presentation in the
XRDF discussion paper [4]. Both offer (reversibly mapable) alternatives to the statement/list
notation of the extended model.

4.1 The Extended Model as a Graph

The graphical language for the extended model provides the constructs oval (representing re-
sources) and directed labeled arcs (representing relations). Each oval representing a resource
of the atom-type has inscribed a content taken from the alphabetA∗. Each embedded oval
will be augmented with a number that is unique within the oval it is directly embedded in.
Numbers will be left out where possible (ie., in statements, where the ordinal number follows
from the direction of the arc, and in lists with one element only). A precise transformation to
and from the nested-triple notation of the extended model is straightforward (compare [4]).
Some examples of the graphical notation are given in the figures below.

XWMF Reinhold Klapsing

was created by

Figure 3: Representing “XWMF was created by
Reinhold Klapsing”

XWMF Reinhold Klapsing
was created by

Figure 4: The same statement, now neglecting the
fact that the predicate is also a resource (which is
the usual way).

XWMF Reinhold Klapsing
was created by

was said by

Eckhart

Figure 5: Representing “‘XWMF was created by
Reinhold Klapsing’ was said by Eckhart.”, a state-
ment about the previous statement.

XWMF Reinhold Klapsing
was created by

was said by

Eckhart

Porsche
was founded by

Dr. F. Porsche 2

1

Figure 6: Eckhart made two statements.

It is left to the reader to flaten the graphically represented statement of the extended model
to corresponding sets of flat RDF statements. This may suffice to demonstrate that already
mildly complex examples of modeling tasks are much more straightforward to formulate
(either graphical or in triple notation) with the extended model than with the flat model. Given

13Aware: subjective judgement. We hope, however, that some readers may share our opinion.



Reinhold Klapsing

Eckhart Köppen

Wolfram ConenXRDF Document

were created byRDF-XRDF-Converter

XRDF-to-Flat-Triples

1

2

3

1

2

3

Figure 7: A group of people jointly created a collection of artifacts.

the intention-equivalence of the two models (based on the two assumptions stated above), the
extended model seems the more convenient way to express the intentions of set of flat model
statement in which reification and containers are used.

4.2 A pure XML syntax for the Extended Model

It is straightforward to represent the (few) ingredients of the nested/list model as an XML-
DTD (compare [4] with slightly different list and predicate definitions).

<!ELEMENT statement (subject, predicate, object)>
<!ELEMENT list (statement | atom | list)+>
<!ELEMENT atom (#PCDATA)>
<!ELEMENT subject (atom|statement|list)>
<!ELEMENT predicate (atom|statement|list)>
<!ELEMENT object (atom|statement|list)>

A conversion of an XML document that conforms to the above DTD into an extended model
is immediate. The algorithmFlaten from above gives a conversion to an RDF model. From
this, a XML/RDF representation (at least a direct, explicit representation where each state-
ment results in one description) can be derived easily.

Example: The statement [(XWMF wascreatedby ReinholdKlapsing) (Porsche
was foundedby Dr. F. Porsche) wassaidby Eckhart] , compare Figures 6 above, can
be “serialized” as follows:

<statement>
<subject><atom>Eckhart</atom></subject>
<predicate><atom>says</atom></predicate>
<object>

<list>
<statement>

<subject><atom>XWMF</atom></subject>
<predicate><atom>was_created_by</atom></predicate>
<object><atom>Reinhold Klapsing</atom></object>

</statement>
<statement>

<subject><atom>Porsche</atom></subject>
<predicate><atom>was_founded_by</atom></predicate>
<object><atom>Dr. F. Porsche</atom></object>

</statement>
</list>

</object>
</statement>



There is a number of reasons that make pure XML an attractive alternative to the RDF/XML
serialization dialect, we refer the interested reader to the XRDF discussion paper for further
details. We will now briefly turn our attention to basic semantic aspects that are closely related
to the nested structure of expression of the extended model.

5 Some brief considerations of Semantics

To facilitate the authoring and deployment of meta-data, syntactical and structural simplic-
ity is needed. A layered approach has proven to be useful for the definition of models and
techniques (this is especially obvious in the context of XML-based standards, where XML
is the basis for other standards like namespaces which in turn are used in the definition of
XSLT).With the extended model proposed above, we define the syntax of a lowest layer,
make use of the structural primitives statement and list. On top of this basic structural model,
semantic definitions and interpretations can be layered. Though this is not the main topic of
the paper, we will briefly discuss two aspects that are related to semantical explorations of
nested structures.

5.1 Exploring/Propagating Meaning from Outside to Inside

For the task of designing suitable semantics with the extended model we will have to consider
a number of design options. We will propose one possible route and point out a few more
things that might come in handy. Our route makes use of the following key observation:
the semantics related to (sub-)expressions depend on their position within the surrounding
structure – that is, the semantics will be explored starting from the outermost part of the
structure and proceeding to the innermost part. Let’s consider an example that demonstrates
a simple kind of truth predicate.

[ [sky color blue] hasTruthValue FALSE] ]

or, in a flatened version

[r type statement][r subject sky][r predicate color][r object blue] [r hasTruthValue FALSE]

The following transformation and constraints will give the flatened version some meaning in
a FOL representation:

Transformation: Map each triple [s,p,o] into an instance of a predicate triple(s,p,o).

Constraints :
(1) reifies(R,S,P,O)←

triple(R,type,statement)∧ triple(R,subject,S)∧
triple(R,predicate,P)∧ triple(R,object,O).

(2) falsified resource(R)←
statementknown as true(R,hasTruthValue,FALSE).

(3) statementknown as false(S,P,O)←
triple(S,P,O)∧ reifies(R,S,P,O)∧ falsified resource(R).

(4) statementknown as true(S,P,O)←
triple(S,P,O)∧ not(statementknown as false(S,P,O)).



The statement. . . -predicates could be used for further inferences. Note that further em-
bedding works out fine also, ie. falsifying falsified statements is possible. The key point here
is that the truth of the information contained in a triple will be propagated from the outer-
most expression to the innermost. This principle can be used to define more sophisticated
semantics as well, as would be necessary to give a proper meaning to expressions like

[Reinhold believes [Ecki assumes [[Wolfram is nice] hasTruthValue FALSE]]]

It is clear that the actual meaning of embedded expressions depends on the “semantical”
scope that is propagated from the outer predicates.

Scope 3: (believes Reinhold
Scope 2: (assumes Ecki
Scope 1: (hasTruthValue FALSE
Scope 0: (is Wolfram nice))))

What is actuallydonewith this information will depend on the proper definition of semantics
for predicates and their interaction. With respect to the above example the following ques-
tion should be answered: what should be the meaning of an elementary statement of which
someone believes that someone else assumes that its negation is true. Here, an “elementary”
statement can be defined as a statement that has a predicate that does not modulate the truth
value of the subject or object (likeis in the above example). This may suffice to show how
the meaning of statements generally depend on theirposition. From the intention-equivalence
of extended and RDF model shown above, it follows that this is also true for RDF models
– note, that the “position” of a statement in a complex structure is given by its occurence in
reifications/lists, for example, the following set of statements flatens the above expression:

[Reinhold believesr3]
[r3 subject Ecki] [r3 predicate assumes] [r3 objectr2] [r3 type Statement]
[r2 subjectr1] [r2 predicate hasTruthValue] [r2 object FALSE] [r2 type Statement]
[r1 subject Wolfram] [r1 predicate is] [r1 object nice] [r1 type Statement]

Note that there is no need (or better: no use) to “materialize” the intermediate “propositions”
like [Ecki assumesr2], for, if this would be done, an intention-equivalent extended model
would contain two statements:

[Reinhold believes [Ecki assumes [[Wolfram is nice] hasTruthValue FALSE]]]
[Ecki assumes [[Wolfram is nice] hasTruthValue FALSE]]

which is somewhat different from having only the first statement, because now, [Ecki. . . ]
has become a factual statement. It should also be clear from this example that, within the
scope of different statements, literally identic subexpressions can have different meaning.
This also demonstrates that it is not necessary to give every occurence of literally identic
subexpressions an unique identity, because the actual meaning of each occurence depends on
its context, which is captured by the position of the subexpression within other expressions.

5.2 Abbreviating Expressions with Structural Transformations

It is possible to provide some kind of syntactic sugar with the help of structural transforma-
tions that map a “sugarized” notation to the regular extended model. Some possible transfor-
mations are discussed in [4]. This creates the possibility to specify for a predicate which type



of transformation should be performed prior to interpreting the predicate. The transforma-
tions can also be applied recursively and can make use of indirection (see example below).
This touches upon basic layers of semantics for which an extensive discussion is beyond the
scope of this paper. We will therefore only give two brief examples.

The predicatelikes is defined to be of the transformation typen × m, that is a state-
ment of the form [(n1, . . . , nk) likes (m1, . . . ,ml)] will be expandedto the list of statements
([n1 likesm1] . . . [n1 likesml] [n2 likesm1] . . . [nk likesml]). So,

[Wolli likes (Reinhold Eckhart)]

is transformed to

([Wolli likes Reinhold] [Wolli likes Eckhart])

Further assume that a specific predicate,representedBy, can be used to givenamesto lists (a
similar predicate will exist for statements), like in

[(Reinhold, Eckhart) representedBy Friends]

Now, the type of the predicatelikescan be adapted to the possibilities ofindirection, that is if
a nameis encountered in subject or object position, the predicate will not be applied to the
name (which is a resource itself) but to resource or list of resources that is represented by
that name. We will denote the transformation type oflikesaccordingly asin× im. Now, the
following becomes possible:

[Wolli likes Friends]

which will result in the same list of statements as above. Note that this or similar kinds of
indirection can be used to cleanly seperate between relations to a resource and to the resources
(lists/statements) that may be represented by resources.

This technique of basic transformation that may be applied prior to assessing the complete
semantics of predicates, may easily be used to answer the above question:

Assume thatdescribedByis a predicate of the transformation typedescriptivewhich takes
a list with an even number of elements in object position as an input to the transformation
which performs the following:

[Reinhold describedBy (hasName Klapsing hasAddress Essen)]

which will be transformed to

([Reinhold hasName Klapsing] [Reinhold hasAdress Essen])

Whether this kind of transformations should be part of a basic layer of (pre-)semantics cer-
tainly remains to be discussed.

6 Discussion

Let us briefly discuss one of the potential problems of upgrading from the RDF model to the
extended model: the typing of containers. The issue is that two containers with definitions
that refer to the same sequence of elements but with different types (e.g., one Bag, one Seq)
become indistinguishable with the above mapping into the extended model. Allow two brief
remarks: (1) one solution is to relegate this kind of typing of containers to a schema level.



Together with, for example, therepresentedByproperty described in 5.2, names for lists can
be introduce and types for the lists represented by the names can be attached to the names
etc. (2) Another solution is to drop the typing of containers and to simply regard them all
as sequences – and to attach the information how a lists should be treated to the properties
that make use of the list (each property can interpret a sequence as a Bag or an Alt construct
if this suits the definition of the semantics of this property). More alternatives exist and a
solution (an adaptation of the mapping) should be provided when defining a schema level for
the extended model

Certainly, more details could be explored and more questions should be asked and an-
swered14. However, this may suffice to demonstrate that the nesting of statements and the use
of list of statements and resources may allow for a natural representation of useful structures
that are cumbersome to model and difficult to use in RDF. Based on the interpretation of reifi-
cation and containers given above, the RDF model (or, intention-equivalently, the extended
model) can be seen as providing a (relatively rich) abstract syntax to build rather complex
expressions. This may ease modeling with RDF (respectively with the extended model) and
may also provide a more clear-cut syntactic layer for the schema layer(s) to be put on top of
this model.
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